Look! Wiggly-squiggly chromatic strands. Another example of the vesatility of the fractint formula parser. If you want to give the floating point unit of your processor a rest go to http://maxitersfractalfollies.blogspot.com for the ready made gif and a bonus jpg. fract378.gif { ; threadedness ; blank ; calctime 0:03:07.35 ; created Aug 24, 2010 ; Fractint Version 2004 Patchlevel 9 reset=2004 type=formula formulafile=kerrym.frm formulaname=astrd-nr_jul_rjr3 center-mag=0.935569/-0.147609/2.480433 params=-0.891170995208594/0.3318887905514695/1/3/-0.0674153874324778/-0.\ 3227942747276223/90/25 float=y maxiter=1500 inside=0 outside=atan decomp=256 periodicity=0 colors=000302403503504604705805806907A07B08B08C09D1AE1AF1BF1BG1CH1CI1DI1\ EJ1EK1FL1FL1GM1GN1HO2IN2KM2NK2QJ2TH2VG2YE2`D2cB1fA1i81l71n51q41t21w00z03\ z07z0Bz0Fz0Jz0Nz0Rz0Vz0Zz0bz0fz0jz0nz0rz0vz0zz0xz0vz0tz0rz0pz0nz0lz0jz0h\ z0fz0dz0bz0`z0Zz0Xz0Wz0Uz0Sz0Qz0Oz0Mz0Kz0Iz0Gz0Ez0Cz0Az08z06z04z02z00z00\ y10x20v20u30s40r50p50o61n71l81k91i91hA1gB1eC1dC1bD1aE1_F1ZF1YG1WH1VI1TJ2\ SJ2RK2PL2OM2MM2LN2JO2IM2GJ2EH2CE1AC18916614312000101302503605806A07C19D1\ 9E1AF1AF1BG1BH1CI1DI1DJ1EK1EL1FL1FM1GN1HO2IO2JQ2IS2HV2GX2F_2Da2Cd2Bf2Ah1\ 9k18m17p15r14u13w12z00z20z50z70zA0zC0zF0zH0zK0zM0zP0zR0zU0zX0zZ0za0zc0zf\ 0zh0zk0zm0zp0zr0zu0zw0zz0zw0zu0zr0zo0zl0zj0zg0zd0za0z_0zX0zU0zS0zP0zM0zJ\ 0zH0zE0zB0z80z60z30z00x01v02s03q04n06l07i08g19e1Ab1B`1CY1EW1FT1GR1HO2JN2\ IM2HK2GJ2FH2DG2CE2BD2AB19A18817715514413212000000101201 } frm:astrd-nr_jul_rjr3 { ; Kerry Mitchell 14nov98 ; ; Kerry Mitchell's explanation of his "Astroid" formulas is ; at the end of formula "Astroid" ; ; colors Julia set by orbit's closet approach to ; a astroid: x^n + y^n = a^n ; ; p1 = c = Julia parameter ; real(p2) = a = size ; imag(p2) = n = exponent ; p3 = center of astroid ; bailout = 1000 (hardcoded) ; rotation angle, degrees = 0 (hardcoded) ; ; colors inside & outside points the same way ; use decomp=256, float=yes, periodicity=no ; zc=pixel, c=p1, iter=1, done=0 bailout=1000, errmin=bailout a=real(p2), n=imag(p2), aton=a^n center=p3, rot=p4/180*pi, rot=exp(flip(rot)) : ; ; standard iteration ; iter=iter+1, zc=sqr(zc)+c ; ; compute difference between actual location and ; astroid location; update minimum if necessary ; temp=(zc-center)*rot x=cabs(real(temp)), y=cabs(imag(temp)) err=cabs(x^n+y^n-aton) IF (err<errmin) errmin=err ENDIF ; ; bailout at escape or maximum iterations ; set "done" flag ; use log(minimum) as angle for decomp coloring ; IF ((|zc|>bailout)||(iter==maxit)) done=1 t=log(errmin) z=cos(t)+flip(sin(t)) ENDIF done==0 ;SOURCE: 98msg.frm } Roger Alexander
That is a nice image with some wild neon colors. Thanks for posting it. I wondered if I could make an interesting movie by varying one of the parameters. For the start point I used the original p3 value. For the end point I used Fracton's Variations...(something similar to FractInt's evolver) to find an interesting image. Then I used Fracton's Export > Image Sequence... to make an animation that shows what happens to the image when you change the p3 parameter between the two points. I used Quicktime to change the image sequence into a quicktime movie (4 sec, 2.5MB). http://www.fracton.org/fmlposts/20100813_frac378.html Here are the values I used for the p3 parameter: original, start p3(real,imag) -0.0674153874324778 , -0.322794274727622 end p3(real,imag) -0.467415387432 , 0.0772057252723777 -- Mike Frazier www.fracton.org
participants (2)
-
Mike Frazier -
Roger Alexander