Subject No Subject (fractal noise) and the Droste Effect
JackOfTradeZ noted he couldn't do anything with my post Apr. 18. Good thing too. It was meant to illustrate one aspect of chaotic systems-regular inputs can produce highly irregular outputs. I chose it because it superficially is apparent noise. Zooming in repeatedly produces noisy images each unconnected to the last without apparent repetition or structure. Let's all salute the flexibility of self-referential iteration! This post's fractal is an example of the Droste effect (named after a Dutch cocoa manufacture) whose design of their tins and boxes had progressively smaller copies of the labels placed recursively on itself. Go to http://en.wikipedia.org/wiki/Droste_effect for an example. Two sizes of the finished product are at http://maxitersfractalfollies.blogspot.com 800x600 and 3200x2400. Zoom in on the big one to verify the recursive nature of the fractal. fract045.gif { ; Droste effect ; blank ; calctime 0:03:36.30 ; created Apr 20, 2010 ; Fractint Version 2004 Patchlevel 9 reset=2004 type=formula formulafile=esc-ifs.frm formulaname=Diamont center-mag=-4.44089e-016/4.30211e-016/15.50142 params=2/0 float=y maxiter=1200 inside=0 proximity=1 outside=fmod colors=000000111222333333444555666777777888999AAAAAABBBCCCDDDDDDEEEFFFGG\ GHHHHHHIIIJJJJJJKKKLLLMMMMMMNNNOOOPPPPPPQQQRRRRRRSSSTTTUUUUUUVVVWWWWWWXX\ XYYYYYYZZZ______``````aaabbbbbbcccddddddeeeeeeffffffggghhhhhhiiiiiijjjjj\ jkkkkkkllllllmmmmmmnnnnnnoooooopppppppppqqqqqqrrrrrrrrrssssssssstttttttt\ tuuuuuuuuuvvvvvvvvvwwwwwwwwwwwwxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzyyyyyyyyyyyyyyyxxxxxxxxxxx\ xxxxwwwwwwwwwwwwwwwwwwvvvvvvvvvvvvvvvuuuuuuuuuuuuuuutttsstsssrrsrrrqqrpp\ qppqoopoopnnommommnllnllmkkmkkljjliikiikhhjhhiggiffhffheegeegddfccfccebb\ ebbdaadaac``c__b__bZZaZZaYY`XX`XX_WW_WWZVVZUUYUUXTTXTTWSSWSSVRRVQQUQQUPP\ TPPTOOSNNSNNRMMRMMQLLQKKPKKPJJOJJOIINIINHHMGGMGGLFFKFFKEEJDDJDDICCICCHBB\ HAAGAAG99F99F88E88E77D66D66C55C55B44B33A33A229229118007 } Diamont {; Use p1=2 to get the image z=pixel, j=(0, -1), k=(-1, 0), l=(0, 1), m=(1, 0): x=real(z) y=imag(z) y1=(y>.5) x1=(x>.5) y2=(y<-.5) x2=(x<-.5) z1=(y1==0 && x1==0) a=y1*j b=x1*(y1==0)*k c=z1*y2*l d=(z1>0 && y2==0)*x2*m p=a+b+c+d z=p1*z+p |z|<=100 ;SOURCE: esc-ifs.frm } _________________________________________________________________ Hotmail & Messenger are available on your phone. Try now. http://go.microsoft.com/?linkid=9724461
participants (1)
-
Roger Alexander