FOTD 04-08-06 (Well-Rooted Fractal [6])
FOTD -- August 04, 2006 (Rating 6) Fractal visionaries and enthusiasts: Today's 6-rated image is a scene in a remote valley of the Z^sqrt(2)+C as it appears 38 levels up the logarithmic ladder. I named the image "Well-Rooted Fractal" for no good reason. The Z^sqrt(2) fractal is interesting because its midgets are unusually easy to find. They first appear much like the midgets of the Mandelbrot set, hiding between two symmetrically placed elements. Unfortunately, the patterns around the midgets in the square-root-of-two fractals have a tendency to all look the same. The pattern around the barely-visible midget at the center of today's image lacks some of this 'sameness', but it is still similar to many other images. The render time of 8 minutes is just the slightest bit on the slow side. This slight bit of slowness may be avoided however by downloading the already-rendered image from the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> Another very hot day here at Fractal Central kept all thoughts of going outside from the heads of the fractal cats. They spent the day watching birds and squirrels. For me the day was about average. If all remains average, the next FOTD will appear in 24 hours. Until then, take care, and I hear that fractal soup is delicious. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Well-RootedFractal { ; time=0:08:00.55--SF5 on a P200 reset=2004 type=formula formulafile=allinone.frm formulaname=MandelbrotBC2 center-mag=-0.6174173528\ 2187680/-0.20187002932680840/1.964483e+009/1/2.5/\ 3.90137333446116674e-007 params=1.414213562373/0/\ 38/0 float=y maxiter=5000 inside=0 periodicity=10 colors=000fZmyN9wU7u`5tf3rm1qs0kf4fU8aHCX4GV88UC1W\ M3YW4_e5`n6TaAMQEFDI81MIGJSVGaiDjwAlvGnuMpuSqtYstc\ usivsnrlonepjZpfSqcMqKbb0sP8tNFuLMvJUwH`xFgyEetMcp\ Ubka`gi_cq`gh`j``mS`pKZaVYNeX9o926FAAKHEQOIVVL_bPe\ iTjpXow_YtPHrF0p54j98dCCZGGTJKNNOHQSCTY9Ub7Vh4Wm2X\ r0Yq2ep4mp6uk6og6ib6cZ6YU6SQ6MM6HK9FJBDIECGGA0A00F\ 0X6CRMELaUUdcafmiiumkzmnzmqzmszmuzmwzmzzmzzPHUPGUP\ GURIUTKUUMWUOTUQQUSNUUKXTI_THbTFeTEhTCkTBwT9zT8oax\ g`p`_hUZ`NYTGXL9WD2W65jwGZnROf`DZeV`jlahh_feZdbXc_\ WaWV_TTYQSXNRZRN`UJbXGd`Cmc8zf5taAmYFcUKUPPKLUDHYJ\ TdOckTnrYyxk_wxAvnCpdEkVGeLI`MKWNLRNMNONIOOEWRHcUK\ jXNiaOhfPhkQgpRfuSfzSgrUhkWicYjX_kPalIcgJ`cJYZKVVK\ TQLQMLNILLNNMRONVQNZRObTOfUPjVPhURgTSeSTdRUbQVaPW`\ OXwPbsRXpTRlVLiWFXURKSb8RnJ_aUgQdoEow2YyRHzoNxkTvg\ Ztcdr`jpXpnTulQvgNvcKw_HwVExRBxN8xJ5efraboYZmVWkRS\ iOPgRNhULhWJhZHhaFhZMWbTd } frm:MandelbrotBC2 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*floor(p/(2*PI)) r=real(p2)-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================
participants (1)
-
Jim Muth