FOTD 06-05-09 (The Mighty Cubic [7])
FOTD -- May 06, 2009 (Rating 7) Fractal visionaries and enthusiasts: NEW FORMULA ALERT! Today's image uses a new formula, the DivideBrot5a. When the 'recip' function is used, this formula does the same things as the old DivideBrot5 formula, but does them about 10-percent faster. In addition, the changeable function adds much more flexibility. Unfortunately, the continuing busy period here at Fractal Central has kept me from exploring the things that happen when the function is changed, but the rush is near an end, and I expect some interesting images from this new formula in the near future. Today's image is a scene in the Seahorse Valley area of its parent fractal, which is a distorted Mandelbrot set, with cubic features just beneath the surface. The circular features in the background of the image were created by rendering it with the inside set to 'fmod' and a proximity of 0.007. I gave the image a rather side-show sounding name -- "The Mighty Cubic" And then I rated it at a 7, which is just about FOTD average. The calculation time of 7-1/2 minutes is slow, but not unbearably so, and the finished image is posted, as always, for instant viewing on the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> The weather was dry Tuesday here at Fractal Central, but the heavy clouds that hung overhead all day and the temperature of 57F 14C kept the fractal cats in a sullen mood. Nicholas got so out of sorts that he cussed me with the 'hiss' word when I tried to comfort him. Cassie simply found a soft cushion, curled up and slept for most of the day. My day was busy, though not as bad as Monday, and with FL unable to do garden work, I got a bit of help. The next FOTD will be posted, if all goes well, in 24 hours. Until then, take care, and where is Hilbert space? Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= The_Mighty_Cubic { ; time=0:07:31.94-SF5 on P4-2000 reset=2004 type=formula formulafile=basic.frm formulaname=DivideBrot5a function=recip passes=1 center-mag=-1.790989550773074/+0.4048960468128376/\ 7.68e+008/1/-22/0 params=3/2.5 float=y maxiter=1500 inside=fmod proximity=0.007 periodicity=10 colors=000qmy__dIDKw_LhRFUIAF95U80K50A20Lm2AP1TasJ\ P`9CINLDHF9BA65531ke9fs6S`3EIU5dF2KyzX2Nm6_2ruG_aA\ IJ5pgnZTYHEH2E2171fJxmYoPHQWAlqgp_TZIEH2j21N1suyLc\ nFUaAKP5AC00r0ozOezIVhCLa6AAjLFKA7zfDgT9TJ6E936HM4\ BE257K`2FR1AI1590oPSbILQCEDzzVziAFV7BN57F237Dig6NM\ ojzYVeHFLCJm8CX46G1Do09b06Q03Dblk22MYcuHKThw_bqpQ_\ ZDIHEqOAcIcSQcJRcASWEUPIWILYOM_UNa_OcdPeSIlFCr26x6\ UcApJ8_D6J7431I2BW1Kh1TK3SM0E2ns1ae1PS0CEScMIQE9D7\ FLDL8bA4JgQySt_aaJSSEJJ9994CAk65ObxaThSJUJ9F91QXcE\ dK7KuVkIpzDbj9QV4DFFLkBF_7AO35CuNFfHBTB7E53`GBOA7C\ 53RhfDMLmzC`j9PV6CF3RrxI_c9IK3EePLoGEY87HHpXCbO8QG\ 4D8z93e62L31LhFEUA7F5ZW_HGIgGUXCMM8FB47a3WP2LC1AyR\ kcoXQYMDHBjWLNGApiJQN9QND8g04M0EWC7G6CUx6FUPdBGR78\ D3e5UV3ML2FA17PpRGZI8H9VilKUWAFGKR9DI6693LWxFOhAGU\ 58FPUzEkHbmsQX`DGIAoKYkpHOQ0hZ0MH6Zs4Qe3HS18EO8iC4\ NjFGN78nOePCLREbKATD7J639 } frm:DivideBrot5a { ; Jim Muth z=(0,0), c=pixel, a=-(real(p1)-2), b=imag(p1)+0.00000000000000000001: z=z^2*fn1(z^(a)+b)+c |z| < 1000000 } END PARAMETER FILE=========================================
Jim Muth wrote:
NEW FORMULA ALERT!
Today's image uses a new formula...
frm:DivideBrot5a { ; Jim Muth z=(0,0), c=pixel, a=-(real(p1)-2), b=imag(p1)+0.00000000000000000001: z=z^2*fn1(z^(a)+b)+c |z| < 1000000 }
Actually, there was already a "DivideBrot5a" formula. In fact, there are several formulas in the DivideBrot series: DivideBrot2 { ; Jim Muth z=0, c=pixel, aa=real(p1), bb=imag(p1), dd=real(p2), ff=imag(p2)+64: z=z^aa/(z^bb+dd)+c |z| <= ff } DivideBrot3 { ; Jim Muth z=0, c=pixel, a=real(p1), b=imag(p1), d=real(p2)+100: z=sqr(z)/(z^(-a)+b)+c |z| < d } DivideBrot4 { ; Jim Muth z=0, c=pixel, a=real(p1)-2, b=imag(p1), d=real(p2)+100: z=sqr(z)/(z^(-a)+b)+c |z| < d } DivideBrot5 { ; Jim Muth z=0, c=pixel, a=real(p1)-2, b=imag(p1)+0.00000000000000000001: z=sqr(z)/(z^(-a)+b)+c |z| < 1000000 } DivideBrot5a { ; Jim Muth z=0, c=pixel, a=real(p1)-2, d=real(p2)+16 b=imag(p1)+0.00000000000000000001: z=sqr(z)/(z^(-a)+b)+c |z| < d } DivideBrot5b { ; Jim Muth z=0, c=fn1(pixel), a=real(p1), b=imag(p1)-2, d=real(p2)+0.00000000000000000001, f=imag(p2)+16: z=(z^a)/(z^(-b)+d)+c |z| < f } DivideBrot5Julia { ; Jim Muth z=pixel, c=(p2), a=real(p1)-2, b=imag(p1)+0.00000000000000000001: z=sqr(z)/(z^(-a)+b)+c |z| < 1000000 } DivideBrot6 { ; Jim Muth z=(0,0), c=pixel, a=real(p1), b=imag(p1)-2, d=real(p2)+0.00000000000000000001, f=imag(p2)+16: z=z^(a)/(z^(-b)+d)+c |z| < f } DivideBrot6Julia { ; Jim Muth z=pixel, c=(p3), a=real(p1), b=imag(p1)-2, d=real(p2)+0.00000000000000000001, f=imag(p2)+16: z=z^(a)/(z^(-b)+d)+c |z| < f } Sincerely, P.N.L. ------------------------------------------------- http://home.att.net/~Paul.N.Lee/PNL_Fractals.html http://www.Nahee.com/Fractals/
participants (2)
-
Jim Muth -
Paul N. Lee