FOTD -- January 04, 2009 (Rating 6.5) Fractal visionaries and enthusiasts: Today's quickly-found image returns us to the MandelbrotBC3 formula and the fractal that is formed when the expression Z^(1.5)+C is iterated 22.15 levels up the logarithmic hyper- ladder with no function applied. This parent fractal doesn't look like much at first glance, but it has an interesting area near the southeast shore line of its main bay. Today's image is located on a filament extending from a larger minibrot in this area. I rated the image at a 6-1/2, with the extra half-point added by my modest coloring efforts. The name "Filament Abundance" gives away the appearance of the image even before it is calculated. The calculation time of 8-1/4 minutes borders on slowness. To avoid all chance of impatience, I recommend surfing out to the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> and viewing the already-calculated image there. Near full sun and a temperature of 37F 3C kept the fractal cats on their best behavior here at Fractal Central on Saturday. I am almost always on my best behavior, so nothing more need be said. The next FOTD will in all likelihood be posted in 24 hours. Until then, take care, and keep taking care until there is no more care to be taken. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Filament_Abundance { ; time=0:08:15.24-SF5 on P4-2000 reset=2004 type=formula formulafile=basic.frm formulaname=MandelbrotBC3 function=ident passes=1 center-mag=+0.778594649890781/+0.04565415904501465\ /3.0825e+009/1/-27.5/0 params=1.5/0/22.15/0 float=y maxiter=6000 inside=0 logmap=825 periodicity=10 colors=000KKcKKcKKcKKcKKcKKcKKcKKcKLcKMbKNbKObKPbL\ QbMRbRKhTKhVKhXKhVKhUKhWKhYKjZHlXKjWPgUPeSPcRPaPPf\ NJjLRnKQrJPwIOvHNuHMuGKtFItFHtEGtDJtDMtCPtBStBVtAY\ t9`t9ct8ft7it5rx7lt8gp9alAXiCSeDMaEHYEDXFCWFCVFCUG\ CTGCSGBRHBQHBPHBOIBMIAKIAIJAEJAAJAAL9AJAAIAAGBAFBA\ DCACCABCA9DA8DA6EA5EA3FA2FA0DA1FA2GA3HA4IA5JA6KB7L\ C8MD9NEAOFAPGESFIVFMXFQ_FUbFYdFahFemFirFmvFzzFzzFz\ zGzvFztFzrFzpFznFzkFziFzgFzeFvcFr`FmZFhXFfVFeTFpfo\ menjemgeledlbdk_djXcjVciSchPbhMbgKbfHafEaeBad5ig9a\ dCVbFN_JHWIGYIG_IG`HGbHFcHFeGFfGFhGEjFEkFEmFEnEDpE\ DqEDsF9sEDtEGuDLvDOwDRxCWyCZzBczBfzBjzAnzArzAuzZkf\ zgSzcTz`UvXVrUWmPThRWcSYZT`UUbQVeRWgTXiVYlXZnZ_q``\ sbcxaaza_z`Yz`Wz_Uz_SzZQzcSzaPzcNzeLzgIziGzkGNmEOo\ DOqCPsAPu9zw8zz6zz5zzczzczzczzczzzzzczzczzVJzzJzUK\ zUKzUzzUKzzLzULzUzzTMzzLzRLzQLzzLzOKzNzzMKzzKzKJzJ\ zzzJzHJzFzzLLzzMzXOzaPzzR } frm:MandelbrotBC3 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*fn1(p/(2*PI)) r=real(p2)+PI-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================