FOTD -- May 24, 2008 (Rating 6.5) Fractal visionaries and enthusiasts: Today's image, which I named "The Blue Minibrot", came about when I subtracted Z^(1.1) from Z^(-1.1) and added C to produce a parent fractal consisting of one multi-bayed main part and a smaller disconnected Mandeloid which is partially obscured. Today's scene is located in the East Valley area of this smaller Mandeloid. I named the image "The Blue Minibrot" because of the intensely blue minibrot at the center. I could just as easily have named it after the colorful art-nouveau-like features surrounding the minibrot. After not too much thought, I rated the image at a 6.5. I am only moderately impressed by it. The calculation time of a fire- ball-fast 41 seconds will make running the attached parameter file a pleasure. Another way to see the image is to visit the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> where it (hopefully) is or soon will be posted. Thursday turned into an absolutely perfect day here at Fractal Central, with crystal clear skies and a temperature of 72F 22C. The fractal cats were more concerned with scampering squirrels than the fine weather. And I was more concerned with work than the weather. The next FOTD will appear in 24 hours. Until then, take care, and be one of them. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= The_Blue_Minibrot { ; time=0:00:41.24-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=MandAutoCritInZ function=ident passes=1 center-mag=-2.4660478735/+1.253346387/1310.263/1/\ 66.5/0 params=-1/1.1/1/-1.1/0/500/0/0 float=y maxiter=1500 inside=0 logmap=44 periodicity=10 colors=000QxzNuzKrsHopElmBij8fgCcdF`ZJYTMRNQKHTEBU\ K9UP7UU6UZ4Uc2Uh1N8ILAMKCQQKLVSH`ZDef9jm5YeMMZaBIJ\ 1114JK7_b9pt6_l3Jd03Y28Q3CI5HA6L36VD6cN6lX6ueObheL\ kv3mr4jn5gj6df7ab8ZZ9WVAT83MRARiNmiKdiHWj1Ji8MiFOi\ LQiSTiYVidXknYijZggZedZc`_aY_VMa`V_fbZljXrrWmkYhd_\ cY`ZRbXOkUKcSGXPCPN9IpU_lRUiOOfLIkM2cIDWFNJ7UPCXVH\ _`MbfQelVhr_kwcmn_keWihltiisjfskcsk`slYsmWsmTsnQso\ NroKrpIrqFrqCrr9rs6rs4rq7spAtoDtmGulIukLvjOvhRwgUx\ fWxdZycaybdzafz_dyYbyWaxU_xTYxRXwPVwNUvMSvKQvIPzGN\ zFMzIQzKTzMXzO_zQczSfzPczN`zLYzIVzGSzEPzBMz9Jt7GzB\ JzELzHNzKPzNRzRTzUVzXXz__zbazfcziezlgzoizrkzumztlz\ tlzskzskzrjzrjzqizqiznfzlczj`zgYzeWzcTz`QzZNzXLzUI\ zSFzQCzOAzUFzZKzcPzhTzmYzrbzwfzB4zL7zV9zdBzmDzcAzU\ 7zK5zA2z00zCEzKKzSPzZUzVRzSPzPNzMLzIIzFGzCEz9CzIGz\ QKzZOzfSzoWzw_zcezKjzPlzTnzYozaqzfszjtzerzapzYnzUl\ z9yzVkzpZzL2zO7zQCzTHzVLz } frm:MandAutoCritInZ {; Jim Muth a=real(p1), b=imag(p1), d=real(p2), f=imag(p2), g=1/f, h=1/d, j=1/(f-b), z=(((-a*b*g*h)^j)+(p4)), k=real(p3)+1, l=imag(p3)+100, c=fn1(pixel): z=k*((a*(z^b))+(d*(z^f)))+c, |z| < l } END PARAMETER FILE=========================================