FOTD -- November 29, 2009 (No Rating) Fractal visionaries and enthusiasts: Today's image could have been named "The Big Bang". It shows the beginning of one of the strange rectangles in a Julia set of the East Valley area of the overlapping minibrots on the infinitely divided main spike of the Z^(2.003) Mandeloid. Yes, this is where it all begins. As the value of real(C) is decreased, the rectangle shrinks and eventually fills in with what I call sandy debris. Today's image captures the curious rectangle on the verge of vanishing completely, or if we look at it from the other direction, a single moment after birth. Choosing the birth aspect, I named the image "Emerging Rectangle", though because of its almost total mathematical interest, I could give it no name. The real(p3) parameter is extremely critical -- change it even slightly at your own risk. The calculation time of under 3 minutes is within reason, as also is the trip to the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> to view the finished image without the inconvenience of calculating it. A mixture of sun and clouds with a temperature of 50F 10C made Saturday an off-and-on day here at Fractal Central. As far as I could tell, the fractal cats slept through most of it. The next FOTD is due to be posted as always in 24 hours. Until then, take care, and does anyone really believe that the 'green' movement can actually make a difference in the earth's climate? Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Emerging_Rectangle { ; time=0:02:52.59-SF5 on P4-2000 reset=2004 type=formula formulafile=basic.frm formulaname=SliceJulibrot4 center-mag=-0.000000275\ 4171323/+0.0003917573011645/2.587047e+012 passes=1 params=90/90/90/90/-1.742904629841241/0/0.00018/0.\ 076/2.003/0 float=y maxiter=15000 inside=bof61 logmap=258 periodicity=10 mathtolerance=0.05/1 colors=0004Kw5Ku7Ks8Kq9KoALmBMkCNiDOgEMeFKcGI`HGXH\ EUICRJANK8KL6HM4DN2AN07O5AP9CQDFRHHSLJSQMTUOUYQVaT\ WeVziXzlMzoBzr0zl6zfCz`IvVOrPUmOVhMVcKWZKWUKWPKXKK\ XKKUKKUKKUKKUKKUKKUKKUKKUKKUKJUKIUPI_MH`JG`FG`CF`9\ E`6E`UBWq9RmDTjHUgLVdPXaSYZ0Zzzzzzzzzzzzzzzzzzzzza\ zzbzzbzzczzczzdzzdzzezzfzzfzzgzzgzzhzzhzzizzizfjze\ jzekzekzelzelzemzenzen7zo7zo6zp6zp6zq5zq5zr4zr4zs3\ zs3zt1zu3zt4zs6zszerzeqzfqzfpzfozfozfnzgmJzmLzlMzk\ OzkPzjQziSziTzhVzgWzgYzfZze`zeazdczcdzczjbzjazjazj\ `zkZzj_zj_zj_zj_zj`zj`zj`zj`ziaziaziaziazibzibzibz\ ibzhbzhczhczhczhczhdzhdzhdzgdzgezgebzeazeazf`zf`zf\ `zf_zf_zgZzgZzgYzgYzhYzhXzhXzhWzizeizeizeizejzejzd\ jzdjzdjzdkzdkzdkzdkzdlzclzclzclzcmzcmzcmzcmzdnzcmz\ blzakz`jz_izZhzYgzXfzVfzWezWelzelzekzekzejzejzdizd\ izdhzdPzTSzQRzRRzSQzSQzTPzTPzUOzUOzVOzVNzWNzWMzXMz\ XLzYLzZLzZKz_Kz_Jz`Jz`Iza } frm:SliceJulibrot4 {; draws most slices of Julibrot pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), c=p+flip(q)+p3, z=r+flip(s)+p4: z=z^(p5)+c |z|<=9 } END PARAMETER FILE=========================================