This fractal will definitely be re-sampled soon, hopefully in tomorrow's post.
Posting re-sampled images is a great benefit of my blog. The convenience of
pre-calculated pars and anti-aliased gifs, who can argue with that?
Speaking of blogs go to http://maxitersfractalfollies.blogspot.com
to check things out.
Circles and Curls { ; needs re-sampling
; fract469.gif
; calctime 0:10:48.62
; created Oct 13, 2010
; Fractint Version 2004 Patchlevel 9
reset=2004 type=formula formulafile=2circles.frm
formulaname=cenx=ceny_jul center-mag=-0.545532/-0.10771/17.1126
params=-0.8416089358195745/-0.2229987487411115/0.125/0.3681142612994781/\
0.5048982207708976/-0.5791192358165227 float=y maxiter=1500
decomp=256 periodicity=0 cyclerange=0/255
colors=DHVCGUBET9DS8BR7AQ69P57O36N24M13L02K02K13L25M36N47O69P7AQ8CR9DSAE\
TBGUCHVDIWFKXGLYHMZIO_JP`KRaLSbMTcOVePWfQXgRZhS_iTajUbkVclXemYfnZgo_ip`j\
qakrbmscntepufqvgrwhtxiuyjvzjvziuyhsxgrwfqvdoucntblsakr`jq_hpZgoYfnWdmVc\
lUbkT`jS_iRYhQXgPWfNUdMTcLSbKQaJP`IN_HMZGLYEJXDIWCHVBFUAET9DS8BR7AQ58P47\
O36N24M13L02K02K13L25M36N47O69P7AQ8CR9DSAETBGUCHVDIWFKXGLYHMZIO_JP`KRaLS\
bMTcOVePWfQXgRZhS_iTajUbkVclXemYfnZgo_ip`jqakrbmscntepufqvgrwhtxiuyjvzjv\
ziuyhsxgrwfqvdoucntblsakr`jq_hpZgoYfnWdmVclUbkT`jS_iRYhQXgPWfNUdMTcLSbKQ\
aJP`IN_HMZGLYEJXDIWCHVBFUAET9DS8BR7AQ58P47O36N24M13L02K02K13L25M36N47O69\
P7AQ8CR9DSAETBGUCHVDIWFKXGLYHNZIO_JP`KRaLSbMTcOVePWfQYgRZhS_iTajUbkVclXe\
mYfnZho_ip`jqalrbmscntepufqvgswhtxhtxiuyhtxgrwfqveoucntbmsakr`jq_ipZgoYf\
nXdmWclVbkT`iS_hRZgQXfPWeOUdNTcMSbLQaKP`IO_HMZGLYFJXEIW
}
frm:cenx=ceny_jul {; Kerry Mitchell 26aug98
;
; See the end of the formula general_man-2circ for
; Kerry Mitchell's explanation of the "2 circles
; coloring method".
;
; "2 concentric circles" coloring method for Julia sets
; p1 = c = Julia parameter
; p2 = (both) circle center
; real(p3) = x-circle radius
; imag(p3) = y-circle radius
; bailout hardcoded to 10^12
; use "decomp=256" coloring
;
zc=pixel, c=p1, bailout=1e12, iter=1, rmin=1e12
cenx=p2, radx=real(p3), rad2x=radx*radx
ceny=cenx, rady=imag(p3), rad2y=rady*rady:
iter=iter+1, zc=sqr(zc)+c
tempx=|zc-cenx|-rad2x
tempy=|zc-ceny|-rad2y
temp=tempx+flip(tempy), r=|temp|
IF (r<rmin)
rmin=r, z=temp
ENDIF
IF ((|zc|>bailout)||(iter==maxit))
iter=-1
ENDIF
iter>0
;SOURCE: 98msg.frm
}
Roger Alexander