Timothy Wegner wrote:
First step would be picking a couple of fractals. Suggestions? I suggest one built-in (maybe a zoom in of the standard mandelbrot) and one a formula. Is there a nice complex formula that runs on Fractint, Iterated Dynamics, and Manpwin?
I agree. And as to the complex formula, how about one from Sylvie Gallet, as in the following: comment { Because of its large size, this formula requires Fractint version 19.3 or later to run. It uses Newton's formula applied to the equation z^6-1 = 0 and, in the foreground, spells out the word 'FRACTINT'. } fractint [float=y periodicity=0] {; Sylvie Gallet [101324,3444], 1996 ; requires 'periodicity=0' z = pixel-0.025 , x=real(z) , y=imag(z) , x1=x*1.8 , x3=3*x ty2 = ( (y<0.025) && (y>-0.025) ) || (y>0.175) f = ( (x<-1.2) || ty2 ) && ( (x>-1.25) && (x<-1) ) r = ( (x<-0.9) || ty2 ) && ( (x>-0.95) && (x<-0.8) ) r = r || ((cabs(sqrt(|z+(0.8,-0.1)|)-0.1)<0.025) && (x>-0.8)) r = r || (((y<(-x1-1.44)) && (y>(-x1-1.53))) && (y<0.025)) a = (y>(x3+1.5)) || (y>(-x3-1.2)) || ((y>-0.125) && (y<-0.075)) a = a && ((y<(x3+1.65)) && (y<(-x3-1.05))) c = (cabs(sqrt(|z+0.05|)-0.2)<0.025) && (x<0.05) t1 = ((x>0.225) && (x<0.275) || (y>0.175)) && ((x>0.1) && (x<0.4)) i = (x>0.45) && (x<0.5) n = (x<0.6) || (x>0.8) || ((y>-x1+1.215) && (y<-x1+1.305)) n = n && (x>0.55) && (x<0.85) t2 = ((x>1.025) && (x<1.075) || (y>0.175)) && ((x>0.9) && (x<1.2)) test = 1 - (real(f||r||a||c||t1||i||n||t2)*real(y>-0.225)*real(y<0.225)) z = 1+(0.0,-0.65)/(pixel+(0.0,.75)) : z2 = z*z , z4 = z2*z2 , n = z4*z2-1 , z = z-n/(6*z4*z) (|n|>=0.0001) && test } Later, P.N.L.