FOTD -- March 02, 2010 (Rating 8) Fractal visionaries and enthusiasts: As I said in yesterday's discussion, the strange rectangles exist in the East Valley area of the large split-apart minibrot on the negative X-axis of the Mandelbrot set of the formula Z^(2.003)+C. And to prove my point, today's image shows a minibrot surrounded by a whole flock of rectangles. I have highlighted the rectangles by rendering the image with the inside set to brilliant white. I rather enjoy the overall pattern surrounding the minibrot, which would be worth a FOTD even without the rectangles. With the rectangles included, the image rates an 8. The name "Mandel Rectangles" explains itself. The calculation time of 1-1/2 minutes will pass like greased lightning. A trip to the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> where the finished image is posted for instant happiness, will pass even faster. But note that in a few days the address of the web site will change. I will post the new internet address in tomorrow's FOTD. The partly cloudy skies and temperature of 45F +7C here at Fractal Central on Monday kept the fractal cats leaping on and off their window shelf. They finally gave up trying to catch the sun and settled for an extra treat of tuna. My day was rather busy. The next FOTD will be posted in 24 hours. Until then, take care, and walk with your heads held high. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Mandel_Rectangles { ; time=0:01:35.43-SF5 on P4-2000 reset=2004 type=formula formulafile=basicer.frm formulaname=SliceJulibrot4 passes=1 float=y center-mag=-1.743397952568624/+0.00001662025822986\ /1.66e+008/1/-60/0 params=0/0/0/0/0/0/0/0/2.003/0 maxiter=1800 inside=255 logmap=212 periodicity=6 colors=000AFFAEGACHAAIA8JA6KA4LA3MA5NAAO5KPCQRJWTQ\ `VWdXbdbibfp`kv_oqVgmQ`iLUeGNLQX1_e3Xg4Vh5Th7Qh8Oh\ 9MhAKfCHeDFdEDcFBcH8dI6eJ4gK2iL5eL8bMB_MEXNHWNKUON\ SOQQPTMPWIQZEQaAQd6Mg8JjAGmCCnEmpz6rImsJ6qzmqImpzm\ pHzozmoGznGznzmmFmmFXmzmjCQcANXKJQ6GJKDC2A5KF4KJ4A\ N4ER4JW3O_3Xc3cg3hl2mpArtKvzSzzUzzSzzMzvGsrKmmNlhK\ ecHZZESUBLK600000000000JH7RO9ZWBfcDnjEdkEWlEMlEDmE\ 4mD6lC7lB9kAAk9Bj8Dj8Ej7Fi6Hi5Ih4Jh3Lg2Mg2Ng6IYAEP\ EAGH67SLLaZYbYZcY_cX`dXaeWbeWcfVdfVdgVehUfhUgiThjT\ ijSjkSkkSkfTkbUkYUkUVkPVkLWkGXkCXk7Yk3Yk6_g8`cAb_C\ cWEdTFfRGgQHhPIiOJjNKkMLzLMzJNzIOzHPzGQzFRzESzDTtC\ SzBRzBzzBm`AQWAPRAPMAOH9OC9N79N29R3DV3HZ3Lb4Pf4Tj4\ Xn5`r5dv5hy5laYzE0zD0zD0zC0zC0zC0zF0zI0zK0zN0zQ0zS\ 0zV0zY0z_0zZ0zZ0zZ0zZ0zY0zY0zY07Y05Y04X08W0CV0GU0K\ U0N_0Vd0bj0jo0rt0zs0ys0xs0xs0ws0vr0vr0ur0tr0tr0sr0\ se0tU0tI0tJ0qK0nL0lM0izzz } frm:SliceJulibrot4 {; draws all slices of Julibrot pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), c=p+flip(q)+p3, z=r+flip(s)+p4: z=z^(p5)+c |z|<=9 } END PARAMETER FILE=========================================