FOTD -- April 12, 2008 (Rating 6.5) Fractal visionaries and enthusiasts: Today's image lies in the Z^(sqrt(2))+C Mandeloid as it appears 1/2 level up the logarithmic ladder when calculated by the MandelbrotBC2 formula. I took a step backward when choosing this formula. The scene is located in a valley on the east side of the main bay, which might or might not be an East-type valley. Whatever the nature of the parent valley, there are no elephants or even pieces of elephants in the image. What we do have is a moderately attractive but well broken-up scene with a near-shape- less minibrot at the center. This minibrot might become better defined if calculated at a larger maxiter, but I feel that the current maxiter of 12500 is plenty large enough. The name "Fragmentary Vision" describes the image. The rating of a 6.5 includes an extra half-point for the bit of extra effort I put into the coloring. The calculation time of 10-1/4 minutes is slow, but the time can be speeded up by viewing the finished image on the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> Mild but overcast weather prevailed here at Fractal Central on Friday, with the temperature around 66F 19C. The cats slept through most of it. My day was moderately busy. Hopefully, tomorrow will be slower. The next FOTD, whatever it may be, will be posted in 24 hours. Until then, take care, and be calm in a fractal crisis. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Fragmentary_Vision { ; time=0:10:14.12-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=MandelbrotBC2 passes=1 periodicity=10 center-mag=+0.15332371912302240/-0.010277132064488\ 32/5.053782e+009/1/-167.5/0 params=1.41421/0/0.5/0 float=y maxiter=12500 inside=0 logmap=1050 colors=000MC4NC1PE2PE2QF2QG2RH3RH3SJ3SJ3TK3UL4UL4U\ L4UM4UM4UM5UN5UN5UN5VO6VO6VO6VP6VP6VP7VP7VQ7VQ7VQ7\ WR8WR8WR8WS8WS9WS9WT9WT9WT9XUAXUAXUAXVAXVAXVBXWBXW\ BXWBYX9XWBXVCWUDWTEVSFVRGUQHUPITOJTNKSMLSLMRKNRJOQ\ IPQHQPGRPFSOETODUNCVNBWMAXM9YL8ZL7_K6`K5aJ4bG0bJAc\ LFdNKdPPeRUfUZhWcjYhk_mmdnpamn_jlYgjVdhTafRZdPWbMT\ `KQ_INZFKYDHXBEW8AW9AVABVACUBCUCDUCETDETDFTEGSFGSF\ HRGIRHIRHJQIKQIKQJLPKMPKNOLNOMOOMPNNPNNKNOOMPPMPNL\ QTLRNLRUKSVKLZLSVKZRKdNKkJJrFJyAKzBJzRJyDIwEIvEHuF\ HsGGrHGpIFoIFmJEbKEeLDeMDkMDmMCzUBwN9qP9pRAoUBmWCk\ VDiZEfcFdcGTUH`ZIYZJWZKUZLRdMVcKUcKThKVhJXhJZaJ_hI\ `hIahIbqHcqHdlHeqGfqGgrGhrFjsFltFpuEtuHxuLzuPzuSzu\ Wzu_zubzufzujzunzuizuhzufzuezuczubzv`zw_zxmzymzzmz\ zmzzmzzmzzmzzmzzmzzmzzmzzmzzmzznzznzzozzpzzpzzqzzr\ zzrzzszzszztzzuzzuzzvzzwzzwzzxzzyzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzz } frm:MandelbrotBC2 { ; by several Fractint users e=p1, a=imag(p2)+100, p=real(p2)+PI q=2*PI*floor(p/(2*PI)), r=real(p2)-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================