FOTD -- May 12, 2007 (Rating 6) Fractal visionaries and enthusiasts: Today's image is found rather deep in a valley on the southwest shoreline of the S-shaped main bay of the parent fractal that results when the formula Z^sqrt(2)+C is iterated 130 levels up the logarithmic ladder. The image is unusually rich for one found in a fractal created by an exponent of Z between 1 and 2. Usually fractals in this range hold far fewer spirals and much less intricate detail. Except for the brilliant blue inside fill, the image was rendered in the traditional equal-iteration-bands manner. All the excitement is due to the fractal itself and not to any human manipulation. I named the image "Apparition Root" for no obvious reason. Then I rated it at a 6, which seems about right. The calculation time of 14 odd minutes may be avoided by visiting the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> and viewing the image there. Friday began with dense fog here at Fractal Central, but by 9am the sun had done its work, and the rest of the day was perfect, with sunny skies, gentle winds and a temperature of 81F 27C. The fractal cats passed a good part of the day sitting in the window, watching the world go by. The rest of the time they spent chasing each other up and down the hallway. My day was busier than normal, but not extremely so. The next FOTD will appear in 24 hours. Until then, take care, and be at one with fun. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Apparition_Root { ; time=0:14:22.66-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=MandelbrotBC2 passes=1 center-mag=-1.26354287579943400/-0.456797947395005\ 10/7.112779e+008/1/-75/3.7304841097131336e-005 params=1.4142/0/130/0 float=y maxiter=14500 inside=255 logmap=1110 periodicity=10 colors=000F_PGrOIpNJmMKkLMhJNeIPcHQ`GRZFT_HU`JVaLW\ bNXcPYcRZdT_eV`fXagZbg`chbdidecefdgaihhjjijjj`ff_f\ nVklfgkdfibehXeePdeTddVdbTdaRc`QcZJcYOcXNbRMbQKbSI\ bRGaQEaOCaNAaMA`KA`JA`HA`GAZFAZDAYCAXBAU9AT8AR6AQ5\ AO49O28O17O06O17N17N27O28O38P38P49O49P59Q59Q6AR6AS\ 7AQ7BP8BO8BN9BM9CMACKACKBDJBDICDHCDHDCIECIFCIGCIHC\ IICJJCJKCJLCJMCJNCJOCKPCKQCKRCKSCKTCLUCLVCLWCLXCLX\ CLWEMVFNVGOUHPUJPTKQTLRSMSRNTRPTQQUQRVPSWPUWOVXOWY\ NXZMY_M__L``LaaKbbPdbUecZfdcgechfcjfckgmmhzrizwiwr\ eCmaBhY9bV8_R7XN5UK4RG3OC2L9HTKV_Uhfcvmmli`cfPVbDM\ _1NZ2OZ2PZ2PZ3QZ3RZ3SZ4SZ4TZ4UZ4VZ5VZ5WZ5XZ6XZ6YZ6\ ZZ7cZ7hZ7mZ7rZ8sZ8tZ8uZ9vZ9wZ9zZAw_AuaAscAqeBogCmi\ CkkDikEglEemFcmGanG_nHYlHXkIWhJVgJUgKUhLThLSiMRjMQ\ jNPkOOkOOlPNmQMmQLnRKnSJoSIpTHpTHqUGqVFrVErWDsXCtX\ BtYAuYAuZ9v_8w_7w`6xa5xa4yb4ybMtZNsYNrYNqYNpYOoYOn\ YOmYOlYPkYPjYHrQFuRDxRpzz } frm:MandelbrotBC2 { ; by several Fractint users e=p1, a=imag(p2)+100, p=real(p2)+PI q=2*PI*floor(p/(2*PI)), r=real(p2)-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================