I like this fractal because it has thin intricate arms. Zooming into different minbrots in the area yields lots of variations in the structure of the arms. The formula is a two term parallel resistor type and mixes sinh and z: z=1/(1/(-1 * z^4 * sinh(z) + pixel + 1) + 1/(-1 * z^5 + pixel - 1)) The equation was constructed so that the minimum power of z representing the series for each term is 5. All the minibrots in the fractal are order 5. Here is a link to an image: http://dl.dropboxusercontent.com/u/33642054/image/brittle_star_1200_5.jpg The FractInt compatible PAR file for the image is: Brittle_Star { ; Exported from Fracton. reset=2004 type=formula formulafile=fracton.frm formulaname=F_20150219_1752 passes=1 float=y center-mag=-2.618024534705701/-4.588792567258185e-\ 13/45812985152.63476/1/0/0 params=-1/-1/5/5/-1/0/1/0/1/0 maxiter=2000 inside=0 periodicity=6 colors=000000C10C10O40O40ZA0ZA0hI0hI0oS0oS0ua0ua0y\ m0PE1TJ5YOAbTEgXIkaMpfRukVzp_wH0fG0DLW9Njkmlggcb`U\ WTISM8MF0RM8YVMdd_ikiggc`ZRWTIQK5MF0RM8YVMdd_ikigg\ c`ZRWTIQK5MF0RM8YVMdd_ikiggc`ZRWTIQK5MF0RM8YVMdd_i\ kiggc`ZRWTIQK5MF0RM8YVMdd_ikiggc`ZRWTIQK5MF0RM8YVM\ dd_ikiggc`ZRWTIQK5MF0RM8YVMdd_ikiggc`ZRWTIQK5MF0RM\ 8YVMdd_ikiggc`ZRWTIQK5MF0RM8YVMdd_ikiggc`ZRWTIQK5M\ F0RM8YVMdd_ikiggc`ZRWTIQK5MF0RM8YVMdd_ikiggc`ZRWTI\ QK5MF0RM8YVMdd_ikiggc`ZRWTIQK5kmlkmlkmlkmlkmlkmlkm\ ljkijkijkijkijkijkijkihifhifhifhifhifhifhifggcggcg\ gcggcggcggcggcee`ee`ee`ee`ee`ee`dbXdbXdbXdbXdbXdbX\ dbXb`Ub`Ub`Ub`Ub`Ub`Ub`U`ZR`ZR`ZR`ZR`ZR`ZR`ZR_XO_X\ O_XO_XO_XO_XOYVLYVLYVLYVLYVLYVLYVLWTIWTIWTIWTIWTIW\ TIWTIVQEVQEVQEVQEVQEVQEVQETOBTOBTOBTOBTOBTOBSM8SM8\ SM8SM8SM8SM8SM8QK5QK5QK5QK5QK5QK5QK5OI2OI2OI2OI2OI\ 2OI2OI2MF0MF0MF0MF0MF0MF0 } frm:F_20150219_1752 { ; Similar to the parallel resistance formula a=real(p1),b=real(p2)-1,d=imag(p1),f=imag(p2), z=0,c1=pixel-p3,c2=pixel-p4: z=1/(1/(a*(z^b)*sinh(z*p5)+c1)+1/(d*(z^f)+c2)), |z|<100 } -- Mike Frazier www.fracton.org