I found this fractal while experimenting with different terms in the parallel resistor formula. In this variation I multiplied cosh times sinh and mixed it with z: z=1/(1/(-1 * (cosh(z) - 1) * sinh(z) + pixel + 1) + 1/(-1 * z^3 + pixel - 1)) The equation was constructed so that the minimum power of z representing the series for each term is 3. All the minibrots in the fractal are order 3. Here is a link to an image: http://dl.dropboxusercontent.com/u/33642054/image/multiplosh_1200_5.jpg The FractInt compatible PAR file for the image is: Multiplosh { ; Exported from Fracton. reset=2004 type=formula formulafile=fracton.frm formulaname=F_20150223_1612 passes=1 float=y center-mag=-3.269199343709963/0/2656681.533233844/\ 1/0/0 params=-1/-1/0/3/-1/0/1/0/0/0 maxiter=2000 inside=0 periodicity=6 colors=0000000000000000000000000000000000000000000\ 00000000000000000000000000000000600F00O00X00e00V00\ L00A00UMFaULj`RrhYzocshYkaScVMWOH000700J00U00d00a0\ 0Q00F00300WWb``geemjjroowkkrffmaahZZeUU`215B4KK8ZS\ Bm`HvjPttXrzdkzkWzsFzz0tpDmdRfUdZIsaJvfMunSsuYrzam\ z_czYVzWL00083FH7UPAhXFw_9ca4Jd00kCIsPZxXjzfdzoOzw\ 6ztDzjXz`prPZiCI`00_4GZ8XYClUDqK9_A4I000000300900F\ 00L00O00U00_00e00b00V00O00H00D00600UMFZRJdWNgZPlcU\ rhYxmazocuk_pfWkaSh_QcVMZRJUMF000300B00J00Q00U00a0\ 0h00a00Y00Q00J00B00700000WWbZZe``gcckggnjjrmmuoowm\ mtiipffmddlaahZZeWWbUU`00052AB4KE6PK8ZPAhVDr`HvcKv\ jPtqUswZqzapzffzkWzqLzsFzx5xw4tpDohNmdRhY`cQiZIsXF\ waJvfMukQtnSssWrx_qzamz`jz_czZYzXSzWLyVI00052AB4KE\ 6PK8ZPAhVDrXFwZBj`7Xa4Jb2Cd00i8CnGOsPZuTdz`pzfdzlT\ zoOzuCzz0ztDzqKzjXzcjwXjuTdoKTiCIc46`15_2B_5MZ8XYB\ gYClXFwQCkK9_G7UA4I316000 } frm:F_20150223_1612 { ; Similar to the parallel resistance formula a=real(p1),b=real(p2),d=imag(p1),f=imag(p2), z=0,c1=pixel-p3,c2=pixel-p4: z=1/(1/(a*(cosh(z)-1)*sinh(z)+c1)+1/(d*(z^f)+c2)), |z|<100 } -- Mike Frazier www.fracton.org