FOTD -- April 17, 2009 (Rating 8) Fractal visionaries and enthusiasts: Today's image is a scene in the fractal that results when the formula Z^(1.3)+C is calculated at a level of 1 minus PI on the logarithmic hyper-ladder. A jagged minibrot lies at the center of the image, though it is rather obscured in the glare of a fractal nuclear explosion. I named the image "Peak of Destruction", which is kind of what it looks like. The rating of an 8 includes a mighty 2 points for the coloring. Without the special coloring effects, the image is rather boring and worth no more than a 6. I used the passes=b option because I like to see it working. The outside=tdis option is necessary for the explosive effect. The calculation wait of 1-1/4 quick minutes may be avoided by viewing the already-calculated image on the FOTD web site at. <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> Total sun and a temperature of 66F 19C here at Fractal Central on Thursday gave the fractal cats their best day so far this spring. If my day had not been so busy, it might have been my best day of the spring also. FL had a very good but rather hard day starting her garden work for the season. The next FOTD will be posted in 24 hours. Until then, take care, and look for the ultimate fractal. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Peak_of_Destrution { ; time=0:01:16.04-SF5 on P4-2000 reset=2004 type=formula formulafile=basic.frm formulaname=MandelbrotBC3 function=floor passes=b center-mag=-1.919725495606011/+1.976500603464784/\ 3.008302e+011/1/-97.5/0 params=1.3/0/-2.1415926535\ 8979/0 float=y maxiter=2000 inside=255 outside=tdis logmap=117 periodicity=10 colors=000zzzzzzzzzbJkgVflebjadiYehUffQgeNhdJjbFka\ Bl`7m_4nV9mQEmLImGNlBRl6Wl2_lBajKciTeg`ffihdrjczkb\ ymZxoWwqSvsPuuLuwIqsHmoGilFehEadDYaCUYCQUBMRAIN9EJ\ 8AG76C6296485585685875975A75C65D65E65G55H55I55MA6P\ E6TJ6WN6_S7bW7f`7id7mi8pm8tr8wv8tsAqpBomCljDjgEgdG\ daHb_I_XJYUKVRMSONQLONIPLGQJEOIDMHCKGBJFAHE9FD8EB6\ CA5A948837725613502_SY`PZaNZcLZdJ_eG_gE_hC`iA`j8`i\ 7ai7bh7ch7cg6dg6ef6ef6ff6ge5ge5hd5id5jc4jc4kc4lb4l\ b4ma3na3n`3o`3p`3p_6o_8n_AmZCmZFlZHkZJkYLjYOiYQiYS\ hXUgXWgXZfW`eWbeWddWgcVicVkbVmaVoaSlZPjWMgUJeRGbPD\ `MAYJ7WH4TE2RC3QD4PD4OD5ND6ND6MD7LD7KD8JD9JD9IDAHD\ AGDBGDCFDCEDDDDDCDECDFBDFADG9DG9DJACLACNABQABSAAUA\ AXAAZA9`A9cA8eA8gA8iFDkKHmPLoUPqUKsUUuYWwYXxcYyXZz\ c_zf`zgazhbziczjdzkezlfymgynhzoizpjzqkzrlzsmztmzum\ zvmzwmzxmzymzzmzzmzzmzzmzzmzzmzzmzzmzzmzzmzzmzzmzz\ mzzmzzmzzmzzmzzmzzmzzmzzz } frm:MandelbrotBC3 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*fn1(p/(2*PI)) r=real(p2)+PI-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================