A dark moody palette with a flickering of light. This fractal was
generated with a real p1 (bailout) of 20 instead of the suggested 10^12.
At the usual http://maxitersfractalfollies.blogspot.com.


Moody Blue       { ;fract477.gif
                     ; blank
                     ; calctime   0:01:15.85
                     ; created Oct 17, 2010
                     ;  Fractint Version 2004 Patchlevel 9
  reset=2004 type=formula formulafile=frac_ml.frm
  formulaname=gaussinttot_man center-mag=-0.864/0.761751/17.83333
  params=20/30 float=y maxiter=1500 inside=0 decomp=256 periodicity=0
  colors=00101211312412413523624724825935936A36B37C47D48E48F49F59G5AH5AI5B\
  J6BK6CK6CL6DM7DN7EO7EP7FP8FQ8GR8GS9HT9HU9IUAIVAJWAJXBKXBKYBLYCLZCMZCM_DN\
  `DN`DOaDOaEPbEPbEQcFQcFRdFReGReGSfGSfHTgHTgHUhIUiIViIVjIWjJWkJXkJXlKYlKY\
  mLZnLZnM_oM_oM`oN`pNapOaqObqPbrPcrPcrQdrQdsResRetRftSftSgtTguThuUhuUivVi\
  vVjvVjvWkwXkwYlwYlwZmxZmx_nx_nx`ox`oxapyapybqybqycrydryesyeszftzgtzhuzhu\
  zivzjvzkwzmwznxzpxzqyzryzuzzuzzuzzryzqyzoxznxzmwzkwzjvzivziuzhuzgtzftzfs\
  zesydrycrybqybqyapyapy`ox_ox_nxZnxZmxYmwYlwXlwXkwWkwVjvVjvVivVivUhvUhuTg\
  uTguSfuSftRetQesQdsQdrPcrPcrObqObqOapNapN`oN`oM_nM_nMZmLZmLYlLYlKYlKXkJX\
  kJWjJWjIViIViIUhHUhHTgHTgGSfGSfFRfFReFQdFQcEPcEPbEObDOaDNaDN`CM_CM_BLZBL\
  ZBKYAKYAJXAJWAIV9IU9HU9HT8GS8GR8FR8FQ7EP7EO7DN7DM6CL6CL6BK6BJ5AI5AH59G59\
  G48F48E47D37C36B36A35A259248247236135124124113012001000
  }
frm:gaussinttot_man { ; Kerry Mitchell
        ;
        ; Gaussian integer coloring of Mandelbrot set
        ;   color by average distance to nearest integer
        ;   inside and outside handled the same way
        ;
        ; use decomp=256
        ; real(p1) = bailout (try 1e12)
        ; imag(p1) = scaling factor (try 30)
        ; variable zc used for calculation; coloring done with z
        ;
        zc=0, c=pixel, rmax=real(p1), scale=imag(p1)
        iter=1, rmin=1, z=zc, tot=0:
        ;
        ; iteration
        ;   zr = gaussian integer
        ;   r = distance to zr
        ;   zmin = integer with minimum distance
        ;   tot = running sum of r's
        ;
        iter=iter+1, zc=sqr(zc)+c, rzc=|zc|
        zr=round(zc), r=|zc-zr|, tot=tot+r
        ;
        ; bailout
        ;   scale average distance to decomp angle
        ;   set "iteration done" flag (iter=-1)
        ;
        if ((rzc>rmax)||(iter==maxit))
          angle=scale*tot/(iter-1)
          z=cos(angle)+flip(sin(angle))
          iter=-1
          endif
        iter>0
        }
Roger Alexander