FOTD -- May 27, 2010 (Rating 7.5) Fractal visionaries and enthusiasts: THIS VERSION WORKS!!! Today's unusually colorful image shows a minibrot in the parent fractal that comes about when the expression Z^(sqrt(2))+C is iterated 11 levels up the complex logarithmic hyperladder, and no function is applied. In this case, the series of elements around the minibrots is 1.4142, 2, 2.8284, 4, 5.6569, 8, etc. But with all the discon- tinuities in the images, this series is exceedingly difficult to discern. Despite the discontinuities, some interesting scenes sometimes pop up along the way however, and today's image is one of these scenes. The name "Squirt Minibrot" is a play on the words 'square root'. I rated the image at a 7, then added a half-point bonus for my part in the coloring, most of which was done by the program anyway. The calculation time of just under 3 minutes is about what the image is worth. Extra value may be found by surfing out to the FOTD web site at: <http://www.Nahee.com/FOTD/> and enjoying the finished image in virtual relaxed comfort there. The fractal cats complained about the hot weather here at Fractal Central on Wednesday. When the temperature reached 91F 33C, they stretched out so far on the wood floor that we had to turn on the cool air for the first time this season. With the cool air on, the rest of the day was comfortable enough, at least indoors. The next FOTD will be posted in 24 hours. Until then, take care, and take my word for it. The globe certainly *IS* getting warmer. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Squirt_Minibrot { ; time=0:02:52.20-SF5 on P4-2000 reset=2004 type=formula formulafile=basicer.frm formulaname=MandelbrotBC3 function=ident inside=0 center-mag=+0.2626651480634892/+0.8900190082293845\ /3.828861e+011/1/55/0 params=1.4142/0/11/0 float=y maxiter=1800 logmap=395 mathtolerance=0.05/1 colors=000T09V0AW0AX0AZ0B_0B`0Bb0Cc0Cd0Cf0Dg0Dh0Dj\ 0Ek0Em0Em0Kn0Qo0Wq0`r0cs0gt0kl5cmA_mEYnIVnMRnQNoUJ\ oYFoaBk`Cg_Dc_E_ZFWYFSYGOXHKWIGUICSJ8RK4PL1OLazC`w\ B_tB_qBZnBZkAYgAYcAXZAXVAYWDYXGYYIYYLYZNZ_QZ`TZ`VZ\ aaZbc_cc_cc_dc_ec_ecC0LF0HF0EG0AMA7Q63U30X82cD4mI6\ VN7WR9WWBX`CzeEYjGYnHzmSzlbzllzfmh`m_VnSPiJJeBDeCG\ cDJYELVFOdGQcHTaIWeJYcK`bLbaMe_NhZOjXPmWPyVRzWSuWU\ uWziWztWYgWZfWYdZXb`W`bV_dUYfTWhSVjRTmQRoPPqOOsNMu\ MKwMJyPKsSLmULhXMbZNXaNScOMfPGhPBkQ5mQ0lT4kV8kYCj_\ GjbKidOifSeSXbE`_0d`6c`Cb`IbaOaaUaa_`be`bk_bq_STKH\ 54KBCNHJQNQTTXWZcYdjUfcQhXMiQIkJEmCAn5Dj8GfAJbCMZE\ PVGRRIUNKXJM_FObBQd7SeBTeFTeJWeMZfQcfUhfXmf`rgdvgg\ zgkzgozgrzdozbmz_jzYhzWezKzMAzOAzQAzSAzUAzWAzYAz_A\ zaAzczzezzgzzizzLzzSzzYzzdzzjzzhzzfzzdzzbzzazz_zzY\ zzWzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzz } frm:MandelbrotBC3 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*fn1(p/(2*PI)) r=real(p2)+PI-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================