FOTD -- August 05, 2008 (Rating 7.5) Fractal visionaries and enthusiasts: Yesterday's image showed a very unusual East-Valley type Julia set. Today's shows an interesting Seahorse-Valley type Julia set. The parent fractal came about when I divided Z^2 by (Z^(10)+2.5) before adding C. This parent fractal only vaguely resembles the familiar Mandelbrot set. It has a Seahorse Valley that is almost impossible to find, but I must have come pretty close, because today's image certainly has Seahorse-Valley Julia characteristics. It also has lots of Z^12 characteristics, which are visible all through the image as a series of circular features with 12 sections each. Unfortunately, with its rating of 7.5, today's image falls short of yesterday's. But it is still worth a look, especially with a calculation time of only 29 seconds. The name "A Strange Seahorse" pretty well describes the image. As always, the already-calculated GIF image is or soon will be posted on the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> for instant, fully hedonistic ecstasy. The weather continued absolutely perfect here at Fractal Central on Monday. With the work light, FL and I took a couple hours off in the afternoon for a 3-mile walk along a nearby hillside trail. The temperature of 82F 28C made walking as enjoyable as it gets. When we returned, the fractal cats scolded us for the unaccustomed absence. The next FOTD will be posted in 24 hours. Until then, take care, and change the change that never changes. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= A_Strange_Seahorse { ; time=0:00:29.25-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=DivideJulibrot center-mag=0/0/0.4014516/1/-30/0 periodicity=10 params=90/90/90/90/-1.98955/0.67403096/0/0/12/2.5 float=y maxiter=600 inside=0 logmap=3 colors=000ZZccchhhmmmrrrwvvzxyzwwzwtvwqrwomwnhwmfw\ mdwlbwk`wjZwjYrfVmbSi_QdWN`SKWPISLFNIDJEAEA7A75532\ 100LtheM3hL4kL4mK5pK5sJ6uJ6xI7zI7xNCwSHvWMt`RseWri\ `icb`ZddWagU_kSYnPWrNUuLSxJQvIWtIasIggFeXCdM9cOBXQ\ DQSFJTGDVIBWK9XM8YN6ZP4_R3`T1aU0`wGPqQEl_3giA_aHSV\ OLOVDH`6AWB8SG7OL6KP5GU4CZ38b26_94XG2VN6ZL9aJCeIFh\ GIkFMiYQrzSkmSdcS_WSTSSNBSJ6SF2JO8BXD6XqB`rFcsKftO\ juTmvXpvXouWntWmsVlrUkqUjpTioThnSgmRflRekQdjQdiPch\ ObgOaf101N`eN_cMZbLYaLX`KW_KVZJUYITXISWHRVHRUGQTGP\ SFORGF_HGZHIYIKXIMWJOVJQUKSTKTTMYUObVPfWRkXSoYTkVT\ hTUeRUbPV_NVXLWUJWRHWNFXKDXHBYE9YB7Z85Z53Z21T42O53\ I63D74884AC7CF9EJCFMEJNIMNLPNPSNSVNVYNZ`NacNefNhiN\ klNooNrrNunTpjZlfdgcjchWhmHmz2r`ClLMfmWKDeJbk1W_Dg\ KPr5`s4Xt4Tu3Pv3Lw2Hx2Dy19y15M0YO4_P7aQAbSEdTHeUKg\ VNhXRjYUkZXm__nacpbfqcisdltaiqZgnWelTciRagO_dLYbIW\ _FUXDSVAQS7OQ4MN2KLBQRJVW } frm:DivideJulibrot {; draws 4-D slices of DivideBrot Julibrots pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), aa=real(p5)-2, bb=imag(p5)+0.00000000000000000001, p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), c=p+flip(q)+p3, z=r+flip(s)+p4: z=sqr(z)/(z^(-aa)+bb)+c |z|< 1000000 } END PARAMETER FILE=========================================