FOTD -- November 26, 2014 (Rating A-7,M-7) Fractal visionaries and enthusiasts: Today's image reminded of an ocean scene, so I named it "View of a Distant Sea". The ocean view is seen through a Julia-like hole in an Oblate (real(z),imag(c)) set of the (-Z)^(sqrt(2))+C Julibrot. The art and math both rate a near-average 7. The calculation time of 3-1/4 minutes borders on slowness, so don't hesitate to save time by going to the FOTD web sites. Check the finished image at: <http://www.crosscanpuzzles.com/Archives.html> <http://www.emarketingiseasy.com/TESTS/FOTD/jim_muths_fotd.html> <http://www.Nahee.com/FOTD/> <http://user.xmission.com/~legalize/fractals/fotd/about.html> Wet slushy snow fell all day here at Fractal Central. The large sloppy flakes fascinated the newest fractal cat, Lida, who spent a good part of the day at the window, watching her first snow and wondering what those white things falling from the sky were. The humans, with no holiday trips planned, had little trouble with the weather, but also realized that the sidewalk would eventually need to be cleaned. I'll think about it tomorrow. Who knows when the next fractal will be posted? 'The Shadow' might, but I don't see him in the area at this time. Until whenever, take care, and don't look here for the usual pseudo- clever closing remark. Jim Muth jimmuth@earthlink.net START PARAMETER FILE======================================= VsionOfaDistantSea { ; time=0:03:15.00 SF5 at 2000MHZ reset=2004 type=formula formulafile=basicer.frm formulaname=SliceJulibrot5 center-mag=+0.015260972\ 75944266/+0.00543228716840251/338.3927/13.113/-174\ /-12.7767472894336755 params=0/0/90/0/0.81287637/\ 1.17035136/0.81287637/1.17035136/1.414213562373/0 float=y maxiter=120000 inside=255 logmap=31 periodicity=6 colors=00000E00F00G00H01I02J03K04L05M06N07O08P09Q0\ AR0BS0CN0DI0EE4FF8IFCLFINEOPDURC_TCeVBkXAqZ9w`9vbA\ vdAwfBwhBwiBwkCwmCwoCwqDwrDwtDwvEwxEwyEwwDwvDwuCwt\ CvsBurBtqBsoArnAqm9pl9ok9nj8mi8lg7kf7je7id6hc6gb5f\ a5e`5dd6ch6bl6ap6`s6_p7Zm7Yk8Xh8We8Vc9U`9UZ9UWAUUA\ UWBUZBTcBScCRcCQcCPcGOcJNcMMcQLZTKZWJ__IbbHeeKhhYg\ eVfgTeiQdkOclLcnJcpGcrEcsGcUFc_EcdGceIceJczJczJczK\ czKczIczJczJczKczKczLczLczMczMczNczNczNczOczOczPcz\ PczQczQczRczRczRczSdzSezTfzTgzUhzUjzVlzVnmWpmVomVo\ mVnmUnmUmmUmmUmcTlcTlcTkcSkcSkcSjcSjcRiCRiCRiCQhCQ\ hCQgCQgCPfCUfCUfCUeCUeCUdCUdCUdCUcCmhCmgCmgCmgCmfC\ mfCmeCmeCmc3mb6md9meCmgEmiHmjKmlNwizwjzwlzwnzwozwq\ zwszwtzwtzwtzutzstzqtzotzmtzktzktzktzltzluzmvzmwzn\ xznyzozzozzpzzpzzqzzqzzrzzrzzszzszztzztzzrzzqzzpzz\ ozznzzmzzlzzkzzjzzizzhzzgzzfzzezzdzzczzbzzazz`zz_z\ zZzzYzzXzzWzzUzzTzzSzz808 } frm:SliceJulibrot5 {; draws all slices of Julibrot pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), esc=imag(p5)+9 c=p+flip(q)+p3, z=r+flip(s)+p4: z=(-z)^(real(p5))+c |z|< esc } END PARAMETER FILE=========================================