Dear
reader
Sierpinski
With the if-else feature of the formula parser
it's easy to write a escape time formula for the Sierpinski triangle. I suppose
someone have done that before. Nevertheless here is mine:
formula#5
- Jhsierpinski {;Jos Hendriks,2002
- z=Pixel:
- IF (real(z)<.5 &&
imag(z)>.5)
- z=2*z-(0,1)
- ELSEIF(real(z)>.5)
- z=2*z-(1,0)
- ELSE
- z=2*z
- ENDIF
- |z|<p1
- }
I know pictures made with this algorithm. For
instance there are some in "Fractals everywhere" (Barnsley). These pictures show
the layers due to how long it takes for the orbits to escape. The Sierpinski
triangle itself isn't really visible. I was curious if a better picture was
possible. It turned out that 3 parameters were important: number of iterations,
bail-out value and the colormap. Below is a parfile with an example witch gives
a quite good impression of the triangle.
With the possibilities of fractint there are
with the formula another kind of pictures possible. I'm always eager to find
"texture" like pictures. Pictures that has a kind of repetition, but doesn't
reveal more details when zooming in. Below are two pars with
examples.
I wrote another formula, based upon those
creating the Sierpinski triangle. You could call it a lambdaSierpinski
formula:
formula#6
- Jhsierpinskim {
- z=Pixel:
- IF (real(z)<.5 &&
imag(z)>.5)
- z=(2*z-(0,1))*Pixel
- ELSEIF(real(z)>.5)
- z=(2*z-(1,0))*Pixel
- ELSE
- z=2*z*Pixel
- ENDIF
- |z|<p1
- }
The linearity of the
formula gives parts of the plane, edged by straight lines. Some unlinearity(
spirals etc) slips in cause of lambda. Below 2 parfiles as
examples.
For simplicity I put the frm's and pars below
together. So it's easier to transport them together. All the pars take just a
few seconds to render.
p.s: When I rerendered the images from some of the pars below, the parser
gives:can't understand the parameter color=etc. Nevertheless fractint shows the
image, but it may use an other colormap then I intended. Because I created
the pars in the usual way, I can't understand what went wrong. Anybody
knows?
- frm:Jhsierpinski {;Jos Hendriks,2002
- z=Pixel:
- IF (real(z)<.5 &&
imag(z)>.5)
- z=2*z-(0,1)
- ELSEIF(real(z)>.5)
- z=2*z-(1,0)
- ELSE
- z=2*z
- ENDIF
- |z|<p1
- }
frm:Jhsierpinskim {
z=Pixel:
IF (real(z)<.5 &&
imag(z)>.5)
z=(2*z-(0,1))*Pixel
ELSEIF(real(z)>.5)
z=(2*z-(1,0))*Pixel
ELSE
z=2*z*Pixel
ENDIF
|z|<p1
}
jhsiertriangle {;Jos
Hendriks,2002
reset=2000 type=formula
formulafile=sier.frm
formulaname=Jhsierpinski passes=1
center-mag=0.475632/0.48248/1.850399
params=10000/0 float=y
maxiter=100
colors=000<8>000000000<3>000zzz<88>zzz<4>zzzccc<143>ccc
}
-
- lambdasier1 { ; Jos Hendriks, 2002
- reset=2000 type=formula formulafile=alle.frm
- formulaname=Jhsierpinskim passes=1
- center-mag=+0.54606658322903670/+0.12909227378964890/946.2815
- params=10/0 float=y
- colors=000z02<15>j02<2>g02f02f02f02<55>O02O02N02<3>M020z2<15>0j2<2>0g20f\
- 20f20f2<55>0O20O20N2<3>0M200t<15>00d<2>00a00`00`00`<61>00G
- }
-
- lambdasier2 { ; Jos Hendriks, 2002
- reset=2000 type=formula formulafile=alle.frm
- formulaname=Jhsierpinskim passes=1
- center-mag=+0.54887713642052600/+0.10850051419031680/445.3089
- params=10/0 float=y
- colors=00000e0e00eee00e0eeL0eeeLLLLLzLzLLzzzLLzLzzzLzzz000555<3>HHHKKKOO\
- O<3>ccchhhmmmssszzz00z<3>z0z<3>z00<3>zz0<3>0z0<3>0zz<2>0GzVVz<3>zVz<3>zV\
- V<3>zzV<3>VzV<3>Vzz<2>Vbzhhz<3>zhz<3>zhh<3>zzh<3>hzh<3>hzz<2>hlz00S<3>S0\
- S<3>S00<3>SS0<3>0S0<3>0SS<2>07SEES<3>SES<3>SEE<3>SSE<3>ESE<3>ESS<2>EHSKK\
- S<2>QKSSKSSKQSKOSKMSKK<2>SQKSSKQSKOSKMSKKSK<2>KSQKSSKQSKOSKMS00G<3>G0G<3\
- >G00<3>GG0<3>0G0<3>0GG<2>04G88G<2>E8GG8GG8EG8CG8AG88<2>GE8GG8EG8CG8AG88G\
- 8<2>8GE8GG8EG8CG8AGBBG<2>FBGGBGGBFGBDGBCGBB<2>GFBGGBFGBDGBCGBBGB<2>BGFBG\
- GBFGBDGBCG000<6>000
- }
-
- sier1 { ; Jos Hendriks, 2002
- reset=2000 type=formula formulafile=alle.frm
- formulaname=Jhsierpinski passes=1
- center-mag=0.488878/0.841371/0.7771474 params=100/0 float=y
- outside=imag
- colors=000zzz<5>ttz<3>ppzpoypnxpmwplv<3>mhrlgqkfo<3>gbgfaed_caX_<2>PKPKG\
- HGBNC9TD6ZC6`D6bD6dF5fF5hG5jH3lH3nH3pJ3rJ3tL1vJ3xH6zG9wFCvDFsCHrAKo9Nm7P\
- l6Si5Vh3Ye2`d1ba0e`0fZ6ZSDRLKKGSC9Z53e000zOLR7l00k00i00h00f20e50d70dC0<3\
- >ZN0YP0YS0XX1<3>Rf3Pi3Pm5<2>Lv6Ky7Jz7Kz5Jz7Hz9HyCGvDGsGFpHDmJDkLChNCePAb\
- R9`S9YV7XX7UZ6R`5Oa5Ld3Je3Gh<2>17m05o02r00s00z00t20p52l93hD6dG7`KAXOCSRF\
- OVGKzm0mY6YHGL0NJ0OH2PG6RFARDFSCJU9NV7RV<2>3bZ9VL5XJ2eZ0zm0to1mo6foAaoFV\
- oKOpOJpUCpY5pZ1sa0pd0oe0mh0lk0il0ho0fr0es0bv0ay0`z0fz0Z<2>m0Di06e00b00d0\
- 0e10f32h75iC9kFClJFmLHoPLpUOrXRs`UtdYvf`wkbymezrizvlzyozzrzztzzrwwpttopp\
- lmmkkiifefdbeaZdzlK<2>KOlezp6Gv9JsCKrDNpGOmJPlKSkNUiPVfRYeUZdX`bYb``dZbe\
- YdhXfiU<2>moPppNrsLttKzzKHzKGzLAzH<5>Zz`bzdfzfkziozm
- }
-
- sier2 { ; Jos Hendriks, 2002
- reset=2000 type=formula formulafile=alle.frm
- formulaname=Jhsierpinski passes=1
- center-mag=0.529848/1.20584/3.72083 params=100/0 float=y
- outside=atan
- colors=000zzz<5>ttz<3>ppzpoypnxpmwplv<3>mhrlgqkfo<3>gbgfaed_caX_<2>PKPKG\
- HGBNC9TD6ZC6`D6bD6dF5fF5hG5jH3lH3nH3pJ3rJ3tL1vJ3xH6zG9wFCvDFsCHrAKo9Nm7P\
- l6Si5Vh3Ye2`d1ba0e`0fZ6ZSDRLKKGSC9Z53e000zOLR7l00k00i00h00f20e50d70dC0<3\
- >ZN0YP0YS0XX1<3>Rf3Pi3Pm5<2>Lv6Ky7Jz7Kz5Jz7Hz9HyCGvDGsGFpHDmJDkLChNCePAb\
- R9`S9YV7XX7UZ6R`5Oa5Ld3Je3Gh<2>17m05o02r00s00z00t20p52l93hD6dG7`KAXOCSRF\
- OVGKzm0mY6YHGL0NJ0OH2PG6RFARDFSCJU9NV7RV<2>3bZ9VL5XJ2eZ0zm0to1mo6foAaoFV\
- oKOpOJpUCpY5pZ1sa0pd0oe0mh0lk0il0ho0fr0es0bv0ay0`z0fz0Z<2>m0Di06e00b00d0\
- 0e10f32h75iC9kFClJFmLHoPLpUOrXRs`UtdYvf`wkbymezrizvlzyozzrzztzzrwwpttopp\
- lmmkkiifefdbeaZdzlK<2>KOlezp6Gv9JsCKrDNpGOmJPlKSkNUiPVfRYeUZdX`bYb``dZbe\
- YdhXfiU<2>moPppNrsLttKzzKHzKGzLAzH<5>Zz`bzdfzfkziozm
- }
-
- sier3 { ; Jos Hendriks, 2002
- reset=2000 type=formula formulafile=alle.frm
- formulaname=Jhsierpinski passes=1
- center-mag=0.527529/-0.153234/7.771474 params=100/0 float=y
- outside=atan
- colors=000<3>00n00z0C0<3>0Cn0Cz0P0<3>0Pn0Pz0a0<3>0an0az0n0<3>0nn0nz0z0<3\
- >0zn0zzC00<3>C0nC0zCC0<3>CCnCCzCP0<3>CPnCPzCa0<3>CanCazCn0<3>CnnCnzCz0<3\
- >CznCzzP00<3>P0nP0zPC0<3>PCnPCzPP0<3>PPnPPzPa0<3>PanPazPn0<3>PnnPnzPz0<3\
- >PznPzza00<3>a0na0zaC0<3>aCnaCzaP0<3>aPnaPzaa0<3>aanaazan0<3>annanzaz0<3\
- >aznazzn00<3>n0nn0znC0<3>nCnnCznP0<3>nPnnPzna0<3>nannaznn0<3>nnnnnznz0<3\
- >nznnzzz00<3>z0nz0zzC0<3>zCnzCzzP0<3>zPnzPzza0<3>zanzazzn0<3>znnznzzz0<3\
- >zznzzz000<12>fffiiimmm<3>zzz000<18>000
- }
-
-